TOPIC PLAN

Partn er orga nizati on	UNS	
Topic	Function of Several Variables	
Less on title	Partial Derivatives	
Lear ning objec tives	Students will be able to determine partial derivatives of functions of several variables; \checkmark Students will acquire and deal with derivatives of a function; \checkmark Students will be able to deal with different problems in everyday life, which require finding partial derivatives of a given function; \checkmark Students are encouraged to use technology and different software in their work, while considering problem-based situations.	Strategies/Acti vities \square Graphic Organizer Think/Pair/Shar e
Aim of the lectu re / Desc riptio n of the pract ical probl em	The aim of the lecture is to make students able to calculate partial derivatives of a function and apply the derivatives to calculate approximation of functions. The teacher gives the next problem to the students: 1. Find the equation of the tangent plane to $z=x^{2} \cos (\pi y)-\frac{6}{x y^{2}}$ at $(2,-1)$. 2. Find the linear approximation to $z=4 x^{2}-y e^{2 x+y}$ at $(-2,4)$.	\square Modeling \square Collaborative learning Discussion questions Project based learning \square Problem based learning Assessment for
Previ ous know ledge assu med:	- functions - algebraic equations - differentiating techniques	■observations Conversation S Work sample \square Conference \square Check list \square Diagnostics

[^0]| Intro |
| :--- |
| ducti |
| on / |
| Theo |
| retica |
| I |
| basic |
| \mathbf{s} |

Consider the function f given by

$$
z=f(x, y)=x^{2} y^{3}+x y+4 y^{2}
$$

Suppose for the moment that we fix y at 3 . Then

$$
f(x, 3)=x^{2} 3^{3}+x 3+43^{2}=27 x^{2}+3 x+36
$$

Note that we now have a function of only one variable. Taking the first derivative with respect to x , we have

$$
54 x+3
$$

In general, without replacing y with a specific number, we can consider y fixed. Then f becomes a function of x alone, and we can calculate its derivative with respect to x. This derivative is called the partial derivative of f with respect to x. Notation for this partial derivative is

$$
\frac{\partial f}{\partial x} \text { or } d_{x}
$$

Now, let's again consider the function

$$
z=f(x, y)=x^{2} y^{3}+x y+4 y^{2}
$$

The color blue indicates the variable x when we fix y and treat it as a constant. The expressions y, and are then also treated as constants. We have

$$
\frac{\partial f}{\partial x}=2 x y^{3}+y
$$

Similarly, we find $\frac{\partial f}{\partial y}$ by fixing x (treating it as a constant) and calculating the derivative with respect to y. From

$$
z=f(x, y)=x^{2} y^{3}+x y+4 y^{2}
$$

We get

$$
\frac{\partial f}{\partial y}=3 x^{2} y^{2}+x+8 y
$$

A definition of partial derivatives is as follows DEFINITION
For $z=f(x, y)$, the partial derivatives with respect to x and y are

$$
\frac{\partial z}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

and

$$
\frac{\partial z}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

We can find partial derivatives of functions of any number of variables. Since we can apply the theorems for finding derivatives presented earlier, we will rarely need to use the definition to find a partial derivative.

EXAMPLE 1 For $w=x^{2}-x y+y^{2}+2 y z+z$ find $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}$.
Solution In order to find $\frac{\partial w}{\partial x}$ we regard x as the variable and treat y and z as constants. From

$$
w=x^{2}-x y+y^{2}+2 y z+z
$$

we get

$$
\frac{\partial w}{\partial x}=2 x-y
$$

To find $\frac{\partial w}{\partial y}$ we regard y as the variable and treat x and z as constants．We get

$$
\frac{\partial w}{\partial y}=-x+2 y+2 z
$$

To find we regard z as the variable and treat x and y as constants．We get

$$
\frac{\partial w}{\partial z}=2 y+1
$$

Students can calculate these derivatives using Mathematica on the following way

洸 Untitled－1＊－Wolfram Mathematica 10.0
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
$\ln [1]=w\left[x_{-}, y_{-}, z_{-}\right]:=x^{\wedge} 2-x_{y}+y^{\wedge} 2+2 y z+z ;$
$\ln [3]=\mathrm{D}[\mathrm{w}[\mathrm{x}, \mathrm{y}, \mathrm{z}], \mathrm{x}]$
Out［3］$=2 \mathrm{x}-\mathrm{y}$
$\ln [4]=\mathrm{D}[\mathrm{w}[\mathrm{x}, \mathrm{y}, \mathrm{z}], \mathrm{y}]$
Out［4］$=-x+2 y+2 z$
$\ln [5]=\mathrm{D}[\mathrm{w}[\mathrm{x}, \mathrm{y}, \mathrm{z}], \mathrm{z}]$
Out $[5]=1+2 \mathrm{y}$
plot \mathbf{y} derivative \boldsymbol{y} integral zeros more．．．\subset 序 巨
\＃

Quick Check 1

For $u=x^{2} y^{3} z^{4}$ ，find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}$ ．

We will often make use of a simpler notation：f_{x} for the partial derivative of f with respect to x and f_{y} for the partial derivative of f with respect to y ． Similarly，if $z=f(x, y)$ ，then z_{x} represents the partial derivative of z with respect to x ，and z_{y} represents the partial derivative of z with respect to y ．
＂The European Commission＇s support for the production of this publication does not constitute an endorsement of the contents，which reflect the views only of the authors，and the Commission cannot be held responsible for any use which may be made of the information contained therein．＂

in

| The Geometric Interpretation of Partial Derivatives |
| :--- | :--- | :--- |
| The graph of a function of two variables $z=f(x, y)$ is a surface S, which |
| might have a graph similar to the one shown to the right, where each input |
| pair (x, y) in the domain D has only one output, $z=f(x, y)$. |

[^1]Slope is $\frac{\partial z}{\partial y}$ (picture below)

An Economics Application: The Cobb-Douglas Production Function

One model of production that is frequently considered in business and economics is the Cobb-Douglas production function:

$$
p(x, y)=A x^{a} y^{1-a}, \text { for } A>0 \text { and } 0<a<1,
$$

where p is the number of units produced with x units of labor and y units of capital. (Capital is the cost of machinery, buildings, tools, and other supplies.) The partial derivatives

$$
\frac{\partial p}{\partial x} \text { and } \frac{\partial p}{\partial y}
$$

are called, respectively, the marginal productivity of labor and the marginal productivity of capital.

EXAMPLE 2 A cellular phone company has the following production function for a smart phone:

$$
p(x, y)=50 x^{2 / 3} y^{1 / 3}
$$

where p is the number of units produced with x units of labor and y units of capital.
a) Find the number of units produced with 125 units of labor and 64 units of capital.
b) Find the marginal productivities.
c) Evaluate the marginal productivities at and $x=125$ and $y=64$.

Solution
a) $p(125,64)=50(125)^{\frac{2}{3}}(64)^{1 / 3}=5000$ units
b) Marginal productivity of labor is $\frac{\partial \mathrm{p}}{\partial \mathrm{x}}=\mathrm{p}_{\mathrm{x}}=50 \frac{2}{3} \mathrm{x}^{-1 / 3} \mathrm{y}^{1 / 3}=\frac{100 \mathrm{y}^{1 / 3}}{3 \mathrm{x}^{1 / 3}}$,

Marginal productivity of capital is
$\frac{\partial p}{\partial y}=p_{y}=50 \frac{1}{3} x^{2 / 3} y^{-2 / 3}=\frac{50 x^{2 / 3}}{3 y^{2 / 3}}$
c) For 125 units of labor and 64 units of capital, we have

$$
p_{x}(125,64)=26 \frac{2}{3} \text { and } p_{y}(125,64)=26 \frac{1}{24}
$$

A Cobb-Douglas production function is consistent with the law of diminishing returns. That is, if one input (either labor or capital) is held fixed while the other increases infinitely, then production will eventually increase at a decreasing rate. With such functions, it also turns out that if a certain maximum production is possible, then the expense of more labor, for example, may be required for that maximum output to be attainable.

TANGENT PLANES AND LINEAR APPROXIMATIONS

Earlier we saw how the two partial derivatives f_{x} and f_{y} can be thought of as the slopes of traces. We want to extend this idea out a little in this section. The graph of a function $z=f(x, y)$ is a surface in three dimensional space and so we can now start thinking of the plane that is "tangent" to the surface as a point.

Let's start out with a point $\left(x_{0}, y_{0}\right)$ and let's let C_{1} represent the trace to $f(x, y)$ for the plane $y=y_{0}$ (i.e. allowing x to vary with y held fixed) and we'll let C_{2} represent the trace to $f(x, y)$ for the plane $x=x_{0}$ (i.e. allowing y to vary with x held fixed). Now, we know that $f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the tangent line to the trace C_{1} and $f_{y}\left(x_{0}, y_{0}\right)$ is the slope of the tangent line to the trace C_{2}. So, let L_{1} be the tangent line to the trace C_{1} and let L_{2} be the tangent line to the trace C_{2}.

The tangent plane will then be the plane that contains the two lines L_{1} and L_{2}.
Geometrically this plane will serve the same purpose that a tangent line did in Calculs I. A tangent line to a curve was a line that just touched the curve at that point and was "parallel" to the curve at the point in question. Well tangent planes to a surface are planes that just touch the surface at the point and are "parallel" to the surface at the point. Note that this gives us a point that is on the plane. Since the tangent plane and the surface touch at (x_{0}, y_{0}) the following point will be on both the surface and the plane.

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)
$$

What we need to do now is determine the equation of the tangent plane.

Tangent plane

We know that the general equation of a plane is given by,

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point that is on the plane, which we have. Let's rewrite this a little. We'll move the x terms and y terms to the other side and divide both sides by c. Doing this gives,

$$
z-z_{0}=-\frac{a}{c}\left(x-x_{0}\right)-\frac{b}{c}\left(y-y_{0}\right)
$$

Now, let's rename the constants to simplify up the notation a little. Let's rename them as follows,

$$
A=-\frac{a}{c} \quad B=-\frac{b}{c}
$$

With this renaming the equation of the tangent plane becomes,

$$
z-z_{0}=A\left(x-x_{0}\right)+B\left(y-y_{0}\right)
$$

and we need to determine values for A and B.
Let's first think about what happens if we hold y fixed, i.e. if we assume that $y=y_{0}$. In this case the equation of the tangent plane becomes,

$$
z-z_{0}=A\left(x-x_{0}\right)
$$

This is the equation of a line and this line must be tangent to the surface at (x_{0}, y_{0}) (since it's part of the tangent plane). In addition, this line assumes
that $y=y_{0}$ (i.e. fixed) and A is the slope of this line. But if we think about it this is exactly what the tangent to C_{1} is, a line tangent to the surface at (x_{0}, y_{0}) assuming that $y=y_{0}$. In other words,

$$
z-z_{0}=A\left(x-x_{0}\right)
$$

is the equation for L_{1} and we know that the slope of L_{1} is given by $f_{x}\left(x_{0}, y_{0}\right)$. Therefore, we have the following,

$$
A=f_{x}\left(x_{0}, y_{0}\right)
$$

If we hold x fixed at $x=x_{0}$ the equation of the tangent plane becomes,

$$
z-z_{0}=B\left(y-y_{0}\right)
$$

However, by a similar argument to the one above we can see that this is nothing more than the equation for L_{2} and that it's slope is B or $f_{y}\left(x_{0}, y_{0}\right)$. So,

$$
B=f_{y}\left(x_{0}, y_{0}\right)
$$

The equation of the tangent plane to the surface given by $z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is then,

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Also, if we use the fact that $z_{0}=f\left(x_{0}, y_{0}\right)$ we can rewrite the equation of the tangent plane as,

$$
\begin{aligned}
& z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

We will see an easier derivation of this formula (actually a more general formula) in the next section so if you didn't quite follow this argument hold off until then to see a better derivation.

EXAMPLE 3 Find the equation of the tangent plane to $z=\ln (2 x+y)$ at $(-1,3)$.
Solution There really isn't too much to do here other than taking a couple of derivatives and doing some quick evaluations.

$$
\begin{array}{ll}
f_{x}(x, y)=\frac{2}{2 x+y} & f_{x}(-1,3)=2 \\
f_{y}(x, y)=\frac{1}{2 x+y} & f_{y}(-1,3)=1
\end{array}
$$

The equation of the plane is then,

$$
z-0=2(x+1)+1(y-3)
$$

[^2]IImispora

One nice use of tangent planes is they give us a way to approximate a surface near a point. As long as we are near to the point $\left(x_{0}, y_{0}\right)$ then the tangent plane should nearly approximate the function at that point. Because of this we define the linear approximation to be,

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

and as long as we are "near" $\left(x_{0}, y_{0}\right)$ then we should have that,

$$
f(x, y) \approx \mathrm{L}(\mathrm{x}, \mathrm{y})
$$

EXAMIPLE 4 Find the linear approximation to $z=3+\frac{x^{2}}{16}+\frac{y^{2}}{9}$ at $(-4,3)$.

Solution So, we're really asking for the tangent plane so let's find that

$$
\begin{array}{cc}
f_{x}(x, y)=\frac{x}{8} & f_{x}(-4,3)=-\frac{1}{2} \\
f_{y}(x, y)=\frac{2 y}{9} & f_{y}(-4,3)=\frac{2}{3}
\end{array}
$$

The tangent plane, or linear approximation, is then,

$$
L(x, y)=5-\frac{1}{2}(x+4)+\frac{2}{3}(y-3)
$$

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

